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We consider the dynamical system described by the area-preserving standard mapping. It is known for this
system that P�t�, the normalized number of recurrences staying in some given domain of the phase space at
time t �so-called “survival probability”� has the power-law asymptotics, P�t�� t−�. We present new semiphe-
nomenological arguments which enable us to map the dynamical system near the chaos border onto the
effective “ultrametric diffusion” on the boundary of a treelike space with hierarchically organized transition
rates. In the framework of our approach we have estimated the exponent � as �=ln 2 / ln�1+rg��1.44, where
rg= ��5−1� /2 is the critical rotation number.
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I. INTRODUCTION

In this paper we propose a new estimate for the “Poincaré
recurrences” �or “survival probability”�, P�t�, for the stan-
dard mapping in the vicinity of the chaos border �1,2�. Our
consideration explicitly exploits the fact that the phase space
of the standard mapping near the border separating chaotic
and integrable behaviors has self-similar scale-invariant
structure consisting of hierarchical set of metastable islands
of integrability �“cantori”� embedded in the “chaotic sea”
�3�. To be specific, we consider the area-preserving standard
mapping

yt+1 = yt − K/�2��sin 2�xt,

xt+1 = xt + yt+1 mod 1. �1�

For K� �0,Kg� the phase space of the system has disjoined
islands of integrability which is destroyed as K→Kg from
below, where Kg�0.971 635 406 31 �3�. Above the critical
value Kg the behavior of the system is less universal: many
invariant Kolmogorov-Arnold-Moser �KAM� tori disappear,
but still some islands of metastability survive around the
biggest resonances. However, we should emphasize that the
reorganization of the phase space above the value Kg has no
consequence for our consideration since we do not touch the
region K�Kg and are interested in the survival probability
only when K approaches Kg from below.

Our consideration of the survival probability is semiphe-
nomenological, that is we rely only on the measurable “mac-
roscopic” characteristics acquired in course of the iteration of
the map �Eq. �1��. To be precise, we rely on the following
well–established and confirmed facts: �i� the number of prin-
cipal resonances follows the Fibonacci sequence when
K↗Kg �4,5�; �ii� the generic behavior of phase trajectories is
as follows: the phase trajectory stays in the vicinity of some
resonance �low-flux cantori� and then rapidly crosses the
chaotic sea until another metastable low-flux cantori is
reached �4,6�; �iii� the phase space of the standard mapping
is self–similar being usually represented by a binary �i.e.,

3-branching� Cayley tree �4,7,8�; �iv� the survival probability
has power-law asymptotic behavior, P�t�� t−� �for the first
time this has been shown in �1,2��.

Remind that survival probability is the normalized num-
ber of recurrences �Eq. �1�� which stay in some given domain
of the phase space at time t. Different research groups
present different arguments for estimates of �, typically 1
���3. The most intriguing contradiction concerns the dis-
crepancy in reported values of �. The numerical simulations
�2,9� demonstrate ��1.4–1.5, while almost all known ana-
lytic constructions give essentially larger exponents: �
�1.96 in �7� and ��3.05 in �8�. The scaling analysis �5�
valid just near the chaos boundary gives �=3. The special
attention should be paid to the recent works �10–12�. In �10�
the authors demonstrate that by an appropriate randomization
of the “Markov tree model” proposed in �7,8� one can arrive
at the value ��1.57. The works �11,12� claim �=3 for stick-
ing of trajectories near Kg in agreement with �5� and �
=3 /2 for trapping of chaotic trajectories in the vicinity of
cantori for K�2� /� �where � is a nonzero integer�. The
similar exponent, �=3 /2, was also obtained for a standard
map in the work �13�. There is a point of view that the value
��1.4–1.5 corresponds to an intermediate behavior of the
system which is not yet reached the stationary regime—see
the corresponding discussion in �5,14–16�.

The main aim of the present letter is to present some
simple arguments in favor of the statement that the value �
�1.4–1.5 could be the actual decay exponent of the survival
probability P�t� for t→� without additional randomization
of local transitional probabilities. Let us emphasize once
more that in our approach we get rid of microscopic consid-
eration of the detailed structure of quasiperiodic orbits and
corresponding fluxes, but characterize the phase space of our
system for a given coupling constant, K in the vicinity of the
critical value Kg, just by the hierarchy of resonances.

According to �3,17,18�, the structure of the critical KAM
curve is determined by arithmetic properties of the rotation
number, r, in the continued fraction representation:
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r =
1

m1 +
1

m2 +
1

m3 + . . .

= �m1m2m3. . .� . �2�

The ns best approximant to r is rn= �m1m2 . . .mn�= pn /qn with
m1=m2= . . . =mn=1, where qn is the Fibonacci number. Re-
call that the Fibonacci numbers satisfy the recursion relation
qn+1=qn+qn−1; q0=0 ,q1=1.

For K↗Kg the periodic trajectories with rotation numbers
rn determine the structure of the phase space, converging to
the critical boundary curve with rg �see �3��. In the limit n
→� �i.e., for qn→�� the phase space becomes self-similar
with the scaling factor sn=qn /qn−1→1+rg�1.618, where
rg= �111. . .�= ��5−1� /2 is the “golden mean.” The conver-
gents rn �n is fixed� characterize the positions of unstable
fixed points of resonances for a given value of a coupling
constant, K.

According to �5�, the average local exit time, �n, from a
given scale n can be estimated as �n��rg−rn��

2 /Dn, where rn�
is the ns convergent of the critical rotation number, rg, and
Dn is the local diffusion coefficient. Since �rg−rn���qn

−2 and
Dn�qn

−5, one gets the estimate for the local exit time,

�n � qn. �3�

When n→� �i.e., when K→Kg� one finds for the exit time,
�, from the scale n the following asymptotic behavior:

�n 	 �1 + rg�n = �1.618�n. �4�

To summarize, the following two facts �5� constitute the ba-
sis of our semi–phenomenological consideration:

�i� When approaching the chaos boundary from below, the
average local exit time, �n, from the metastable island of the
hierarchy scale n is proportional to the number of periodic
orbits, qn �see Eq. �3��. This fact reflects the “local” structure
of our phase space;

�ii� When n→�, the local exit time, �n, grows exponen-
tially with the hierarchy scale n �see Eq. �4��. This fact re-
flects the “global” structure of our phase space and allows to
construct the estimate for the survival probability.

II. DYNAMICS IN THE HIERARCHICAL TREELIKE
PHASE SPACE: DIFFUSION ON THE

BOUNDARY VS DIFFUSION
IN THE BULK

The hierarchical construction of self-similar sets implies
that new smaller domains being properly magnified �res-
caled� with the limiting scaling factor sg, coincide �in the
statistical sense� with the former �“parent”� domains. This
construction refers implicitly to the treelike geometry. The
treelike hierarchical geometry of the phase space of the stan-
dard mapping has been proposed in the seminal analytic
works �7,8�. The authors have supposed that the states of the
system are the regions bounded by the low-flux cantori. Each
state consists of an infinite hierarchy of low-flux cantori of
smaller scale. Between any two adjacent cantori there are
possible many other subhierarchies �or “island chains” in the

terminology of �7��. However only one such “island chain”
in each hierarchical level is considered. Thus, the topology
of the full phase space can be represented as a following
diagrammatic hierarchy, where the hierarchy depth �level� is
labeled by the same index n, appeared already in Eq. �2� as
the cutoff in the continuous fraction expansion:

Knowing the local transition rates between neighboring
states from microscopic computations, the authors in �7,8�
have considered the random walk on the 3-branching tree
and have derived the corresponding infinite hierarchy of re-
cursive relations for the survival probability. The plausible
conjectures about the closure of this hierarchy and subse-
quent analysis of the dominant contribution to P�t� allowed
to extract the decay exponent ��1.96 in �7�. However this
value is still rather far from numerically obtained exponent
��1.4–1.5. Below we formulate an alternative point of
view on dynamics on hierarchical landscapes enabling to
find the value of � much closer to known numerical value of
the exponent �.

The hierarchical description sketched above is fully con-
sistent with the consideration of a “diffusion in a mountain
landscape” �19� appeared in a generic description of “diffu-
sion in hierarchies” regardless the subject of the chaotic
Hamiltonian dynamics. For heuristic consideration, let two
sequences of real numbers, An and Vn, be correspondingly
the sizes of landscape valleys �basins� and the heights of
passages �energy barriers� between these valleys with respect
to some reference �energy� level. The basin sizes and the
barrier heights can be introduced iteratively. Suppose that
some dynamical system is located in a basin A0 at the initial
time moment. During the time t1 the system overpasses the
lowest available height V1 and the probability to find the
system in some state distributed initially on A0, relaxes to the
larger basin A1�A0. Inductively, the probability to find the
system located in the basin An at time tn, relaxes at time tn+1
to a larger domain An+1�An by surmounting the lowest
available height Vn. Since by construction the n’s basin hier-
archically includes all basins An−1�An−2� . . . �A0, there is
no difference between the waiting time in the n’s basin and
the total time from the beginning of the dynamical process.
Thus, the survival probability under diffusion on hierarchies
depends essentially only on scaling of basin sizes, An, and
barrier heights, Vn, and exactly this fact allows one to use the
treelike spaces with alternative �Archimedean or non-
Archimedean� metrics �see, for example �20,21��.

Now we are in position to describe the main idea of the
present work. In our description the state of the system for
some value of K near the chaos border is uniquely character-
ized by the number of quasiperiodic orbits, qn at the hierar-
chy level n. Thus, the states are parameterized by the Fi-
bonacci numbers, qn.

We consider the dynamics of the system as the transitions
between different states for given value of n. This is the key
difference with the former description of �7,8� schematically
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outlined above. Namely, in the former approach the authors
have considered the local random walk in the bulk of the
3-branching Cayley tree with the transitions between neigh-
boring states belonging to two neighboring levels of hierar-
chy. Such a construction suggests an Archimedean metric on
the treelike space. To the contrary, we propose to consider an
effective Markov dynamics on the boundary of the
3-branching Cayley tree truncated at the hierarchy level n
�n	1�. We allow for long distance jumps which appear with
the probability prescribed by the limiting scaling factor sg
only between the states of the same hierarchy level n. This
construction implicitly suggests non-Archimedean �ultramet-
ric� space of states.

To be precise, our Markov process takes place in an ef-
fective “energy landscape” constructed in the following way.
We consider the phase space up to the scale n meaning that
we regard the low-flux cantori �metastable islands� of scale n
as local �possibly degenerated� minima of an energy land-
scape. Introduce now the self-similar scale-invariant struc-
ture of the basins of local minima hierarchically embedded
into each others. Namely, each larger basin of minima con-
sists of smaller basins, each of these consists of even smaller
ones etc. Since the hierarchy level n is chosen arbitrary, each
local minimum �i.e., low-flux cantorus of scale n� could be
�and should be� understood as a basin as well, containing
again the scale-invariant hierarchy �“subtree”� of basins of
smaller scale. Such a hierarchy does not conserve the struc-
ture of phase space as the islands of stability in the chaotic
sea, but preserves the treelike factorization of islands of
smaller scale out of the islands of larger scale as K↗Kg.
Note that in the common description of treelike factorization
of low-flux cantori, the value of n is counted from the root of
the tree, meaning that larger and larger values of n corre-
spond to metastable islands of smaller and smaller scales.

To specify our long-distance-jump Markov process in
terms of the transition rates between the states �local
minima�, we construct the hierarchy of barriers between the
basins of minima. Namely, larger basins are separated by
higher barriers, while embedded smaller basins are separated
by lower barriers. The Cayley tree can be regarded as a hi-
erarchical “skeleton” of energy landscape �but not as a space
of states as in �7,8��: the bulk vertices of the tree parameter-
ize the hierarchy of basins of local minima hierarchically
embedded into each others; the same vertices parameterize
the barriers separating the basins.

The crucial requirement to our Markov process is as fol-
lows: the transition probability �per time unit� between any
two local minima is determined by the maximal barrier sepa-
rating these minima. This requirement is equivalent to the
strong triangle inequality. Thus, basin sizes and barrier
heights can be expressed in terms of ultrametric distances
between local minima.

In the conventional description of ultrametric spaces ac-
cepted in applications of p-adic mathematical analysis �22�
to dynamics on energy landscapes, the ultrametric distances
between local minima are labeled in such a way that smaller
transition rates �i.e., higher barriers� correspond to larger ul-
trametric distances. Therefore, while specifying ultrametric
distances similar to the p-adic norm, p
 ,
=1,2 , . . . ,n �p is
the prime number�, we define the index 
 which numerates

the hierarchy levels of Cayley tree in the direction opposite
to the one of index n. In this construction 
=1,2 , . . . ,n is
counted from the boundary of the tree up to the tree origin,
namely, there is a hierarchy of ultrametric distances between
the states of scale n possessing the values p1 , p2 , . . . , pn.

The hierarchical landscape with growing barriers corre-
sponds to the fact that the average local exit time �n from the
states of scale n grows with n: larger the tree �i.e., deeper the
hierarchy�, longer the exit time averaged over all states on
the tree boundary. This condition does not yet defines com-
pletely our energy landscape. We should satisfy another im-
portant requirement, viz, the average local exit time �n from
the states of scale n grows as

�n � �qn/qn−1�n 	 sg
n �5�

for n→�, where qn is the n’s Fibonacci number and sg
�1.618. This means that the energy landscape, being ex-
pressed in terms of ultrametric distances between the states
of scale n, meets a specific behavior of the average local exit
time, �n, with n, and the survival probability as well, through
the relation to the Fibonacci numbers. This is another key
ingredient of our approach.

III. TREELIKE GEOMETRY AND THE
FIBONACCI NUMBERS

The procedure of construction of such a hierarchical land-
scape is described below. Anyway, to be specific, in what
follows we shall always keep in mind the 3-branching Cay-
ley tree, C, as an example of an ultrametric space.

The Fibonacci numbers have natural relation to the ultra-
metric geometry since they are connected to some discrete
symmetries of the hyperbolic space. In order to substantiate
our construction, it seems to be instructive to demonstrate
briefly how the Fibonacci numbers appear in ultrametric ge-
ometry and how they are connected to a 3-branching Cayley
tree. Take the upper complex half-plane z=x+ iy �y�0� and
consider the zero-angled curvilinear triangle ABC bounded
by two vertical lines AC, BC and a semicircle AB leaned on
the real axis as shown in the figure Fig. 1�a�. Tessellate now
the upper half-plane strip Im z�0;0�Re z�1 by the im-
ages of the triangle ABC. Two subsequent steps are shown in
Figs. 1�b� and 1�c�. These images are obtained by sequential
inversions �fractional-linear transformations� of the initial
triangle ABC. The images of all vertices of the triangle ABC

FIG. 1. Inversions of zero-angled triangles: �a�–�c�—three sub-
sequent stages of tessellation of the half-strip Im z�0;0�Re z
�1 by the images of the triangle ABC; �d�—composition rule for
the coordinates of the vertices.
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lie on the real axis Im z=0 and the coordinates of the vertices
of neighboring triangles satisfy the following composition
rule

xn+2 =
pn+2

qn+2



pn

qn
�

pn+1

qn+1
=
def pn + pn+1

qn + qn+1
�6�

shown in Fig. 1�d�.
Define now the 3-branching Cayley tree isometrically em-

bedded in the upper half-plane strip Im z�0;0�Re z�1 by
connecting the centers of neighboring images of zero-angled
triangles by arcs being parts of semicircles leaned against the
real axis—see the Fig. 2. Recall that the embedding of a
Cayley tree C into the metric space is called “isometric” if C
covers that space, preserving all angles and distances. For
example, the rectangular lattice isometrically covers the Eu-
clidean plane E�x ,y� with the flat metric dsE

2 =dx2+dy2. In
the same way the Cayley tree C isometrically covers the sur-
face of the constant negative curvature, H. One of possible
representations of H, known as a Poincaré model, is the
upper half-plane Im z�0 of the complex plane z=x+ iy en-
dowed with the metric dsH

2 = �dx2+dy2� /y2 of constant nega-
tive curvature. The composition rule �6� defines the coordi-
nates of corresponding triangle vertices, �xn�. Hence, the rule
�3� defines a set of rational numbers parameterizing all bulk
vertices of the Cayley tree of n hierarchical levels. The Fi-
bonacci sequences appear as the subsets of �xn� correspond-
ing to alternating left-right �or symmetric right-left� se-
quences of reflections of triangles �these sequences are
marked in Fig. 2 in boldface�. For example, two “zigzags”
starting from the point O1 correspond to two “principal” Fi-
bonacci sequences, f+�O1�= �1111. . .� and f−�O1�=1
− �1111. . .�. The “secondary” zigzags, f�O2�, f�O3� and f�O4�
starting from the points O2, O3, and O4 correspondingly,
have the continued fraction expansions: f�O2�=1
− �121111. . .�, f�O3�= �112111. . .�, and f�O3�= �131111. . .�.
Generically, all “zigzags” have the following continued frac-
tion representation,

f�zig� = �1m2m3 . . . mk1111. . .� for 1/2 � x � 1

1 − �1m2m3 . . . mk1111. . .� for 0 � x � 1/2�
�7�

with k first arbitrary numbers m2 ,m3 , . . . ,mk�m1=1� are fol-
lowed by the “Fibonacci tail” of “1.”

Washing out the metric structure of the set of fractional-
linear transformations depicted in Fig. 2 and leaving topo-
logical structure of the corresponding “zigzags” on the Cay-
ley tree we arrive at the relation between the Fibonacci
numbers and an ultrametric space shown in Fig. 3.

It should be emphasized that the ultrametric graph in Fig.
3 designates schematically the hierarchically organized tran-
sition rates �energy barriers� between the states on the tree
boundary, while the bottom gray points labeled by rational
numbers, pn /qn, parameterize the bulk vertices of the ultra-
metric tree, and hence, they correspond to the transition rates
over the barriers. Again, the dynamics occurs only at this
boundary, but not in the bulk of the tree.

IV. SURVIVAL PROBABILITY

Let us come back to the computation of the survival prob-
ability, P�t�. Our main conjecture is as follows. Extend the
set of states of the dynamic system and suppose that all frac-
tions pn /qn parameterize some quasiperiodic orbits. The tran-
sition rates between any two different states M and N are
defined by the relative “distance” between these states mea-
sured in number of successive reflections �as in Fig. 2� nec-
essary to superpose the points M and N. One might thought
about our system in the following terms. Take a 3-branching
Cayley tree up to some hierarchical level �generation� n
shown in Fig. 3. Parameterize all the bulk vertices of the tree
by the sets of rational numbers pn /qn following the reflection
described above, and consider the “ultrametric diffusion” on
the boundary—a Markov process with the transition rates
encoded in block-hierarchical kinetic matrix, known as “Pa-
risi transition matrix”—see �21,23�. Thus, our jumplike Mar-
kov process is defined by the Parisi kinetic matrix whose
matrix elements are encoded by the set of rational numbers
pn /qn.

The survival probability, P�t�, is the probability to find the
system in the initial state after t jumps on the boundary of the
Cayley tree �with hierarchically organized transition prob-
abilities�. According to the works �24� �see also �25� for the
transparent geometrical interpretation�, the function P�t�

FIG. 2. Few subsequent inversions of the zero–angled triangle
in the strip Im z�0;0�Re z�1 is shown�. Inversions, correspond-
ing to Fibonacci sequences are shown in boldface.

FIG. 3. Topological structure of the graph obtained by the suc-
cessive applications of fractional-linear transformations in Fig. 2.
“Principal” and “secondary” Fibonacci sequences are marked in
boldface �see the explanations in the text�.
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consists of additive contributions from all possible directed
paths on the p-adic tree �recall that in our case p=2�,

P�t,�� = �p − 1� �
�
,j�

p−
e
,jt + p−�. �8�

The indices 
 and j label correspondingly the hierarchical
level of the tree �1�
��� and the specific point in the
hierarchical level 
 �1� j� p�−
�. Pay attention that now 

is counted from the boundary of the tree toward the root
point �see the discussion above�. The eigenvalues 
,j, are
defined via the following construction

��,j = − p�q�
�j� − �1 − p−1� �

��=�+1

�

p��q�
�j��

�

,

�9�
where the sum denoted by � runs along the tree from some
vertex point labeled by the pair of indices �
 , j� to the root
point O1, and q


�j� is the transition probability corresponding
to the state labeled by �
 , j�.

The whole variety of directed sequences running from the
hierarchical level 
=1 to the root point O1 is bounded by
two “limiting” trajectories “logarithmic” and “linear.” The
logarithmic is �log= �1 /5,1 /4,1 /3,1 /2�, and the linear, be-
ing the “principal” Fibonacci one, is �lin
= �3 /8,2 /5,1 /3,1 /2�. The denominators in the logarithmic
sequence grow linearly with 
, q
=
, while the denomina-
tors of the linear sequence grow exponentially, q


	�1.618�
. The notations logarithmic and linear come from
the fact that V�
 , j��−ln q


�j� can be considered as the effec-
tive dimensionless local height of the potential barrier in the
point �
 , j�. The logarithmic landscape is associated with the
logarithmic sequence, for which one has V�
�� ln 
, while
the linear landscape is associated with the linear sequence,
for which one has V�
��
.

Taking into account that: �i� the eigenvalues �9� of the
transition matrix are given by the weighted sums along dif-
ferent directed paths on the Cayley tree, and �ii� the survival
probability does not depend on the multiplicity of paths on
the tree with the same sequence of transition probabilities,
we can directly use the results of �24� for survival probabili-
ties in logarithmic and linear landscapes.

The survival probability for logarithmic and linear land-
scapes reads �see �24��

P�t� 	 e−t/ln 2 for q
 = 2−

−1 �logarithmic�
Ct−1/� for q
 = 2−
2−�
 �linear� � ,

�10�

where C=�� 1
� +1��−�p=2�−���−1/� and �p=2� . . . � is the

p=2-adic � function �see �24� for details�.
The appearance of the factor 2−
 in the transition prob-

abilities q
 in Eq. �10� should be clarified. By definition, 
−1

�for the logarithmic landscape� and 2−�
 �for the linear land-
scape� are the transition probabilities over the barrier of the
hierarchy level 
 separating two basins. To get the transition
probabilities between the specific points x �located in one
basin� and y �located in the second basin�—just these prob-

abilities enter in the kinetic equation on ultrametric trees—
one should divide the transition probability over the barrier
by the number of states in the basin, which is in our case 2
.

The value of � can now be found straightforwardly.
Rewrite the transition rate q
 as

q
 = �1.618�−
 = 2−�
. �11�

From Eq. �11� one gets

� =
ln 1.618

ln 2
� 0.6942 . . . . �12�

One sees from Eq. �10� that in the large-time limit �t→��
the decay of the survival probability is exponentially fast on
logarithmic landscapes. Since the survival probability con-
sists of additive contributions from all possible directed
paths on the 3-adic tree, only the linear landscapes, i.e., the
“principal” Fibonacci sequences, give the major contribution
to the survival probability in the large-time limit �t→��,
leading to the following algebraic decay,

P�t� � t−� = t−ln 2/ln sg � t−ln 2/ln 1.618 = t−1.44, �13�

where sg=1+rg= ��5+1� /2�1.618. Thus, we have �
�1.44.

V. CONCLUSION

The value ��1.44, computed in our work, is much closer
to numerically obtained critical exponent ��1.4–1.5 than
other values of � found in former analytic approaches �ex-
cept the one found in �10–12��. Nevertheless we are far from
a naive thought that our phenomenological consideration re-
solves the problem of analytic computation of the survival
probability in the nonlinear dynamical Eq. �1� in a region
near the chaos border. We only have reformulated some par-
ticular problems of chaotic Hamiltonian dynamics in terms
of Markov dynamics on boundaries of ultrametric trees with
transition probabilities prescribed by internal dynamics of
the system. Recall the two main ingredients of our consider-
ation borrowed from �5�: �i� for K↗Kg the average local exit
time, �n, from the metastable island of the hierarchy scale n
is proportional to the number of periodic orbits, qn; �ii� for
n→� the local exit time, �n, grows exponentially with the
hierarchy scale n.

Note that our description does not contradict with the
value �=3 found in scaling analysis �5� just at the boundary
K=Kg. Namely, our consideration “smears” the scaling �n
	sg

n to some region below Kg where the “secondary” Fi-
bonacci sequences starting from the points O2, O3, O4 in the
Fig. 3 come into the play.

We conclude this paper by saying that the conjectured
approach offers a possibility to rise some interesting ques-
tions concerning the internal structure of the standard map-
ping �1�. For example, it would be desirable to check nu-
merically the existence of the “secondary” Fibonacci
sequences starting from the points O2, O3, O4 in the Fig. 3.
In case of their presence, one would be intriguing to think
about the “phyllotaxis” �26,27� in chaotic dynamical sys-
tems. By this conjecture we would like to attract the attention
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of researchers working in nonlinear dynamical and chaotic
systems to the language �22� developed for the description of
stochastic processes in ultrametric spaces.
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